Many questions posed in the Astro2020 Decadal survey in both the New Messengers and New Physics and the Cosmic Ecosystems science themes require a gamma-ray mission with capabilities exceeding those of existing (e.g. Fermi, Swift) and planned (e.g. COSI) observatories. ComPair, the Compton Pair telescope, is a prototype of such a next-generation gamma-ray mission. It had its inaugural balloon flight from Ft. Sumner, New Mexico in August 2023. To continue the goals of the ComPair project to develop technologies that will enable a future gamma-ray mission, the next generation of ComPair (ComPair-2) will be upgraded to increase the sensitivity and low-energy transient capabilities of the instrument. These advancements are enabled by AstroPix, a silicon monolithic active pixel sensor, in the tracker and custom dual-gain silicon photomultipliers and front-end electronics in the calorimeter. This effort builds on design work for the All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X) concept that was submitted the 2021 MIDEX Announcement of Opportunity. Here we describe the ComPair-2 prototype design and integration and testing plans to advance the readiness level of these novel technologies.
Digital Beamforming has gained significant importance in radar applications in the past years. It helps improve radar performance while reducing mass and power. Improving these figures becomes even more important for space applications. The Space Exploration Synthetic Aperture Radar (SESAR) is a novel P-band (70 cm wavelength) radar instrument developed for planetary applications that will enable surface and near-subsurface measurements of Solar System planetary bodies. The radar will measure full polarimetry at meter-scale resolution, and perform beam steering through programmable digital beamforming architecture. The data obtained with SESAR will provide key information on buried ice and water signatures that can facilitate the design of future human and robotic exploration missions. In this paper we describe SESAR’s large antenna array, the sub-systems integration process, and the different environmental testing activities performed to the overall system in order to raise the Technology Readiness Level (TRL) for its future inclusion in a space-proven system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.