Inverse design is one of the most important design methods of nanophotonic devices. In recent years, with the rapid development of deep learning technique and applications, deep learning assisted inverse design method has been introduced into the field of nanophotonic device design. In this work, by combining the direct binary search method with multilayer convolutional neural networks, we present the inverse design of a wavelength demultiplexer which has 1352 design variables. The dropout strategy has been employed to avoid overfitting in training the inverse design model. The simulation results indicate that the trained CNN can both efficiently forward predict the spectrum and inverse design the structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.