In this paper, we report on two different approaches that have been explored to realize tunable and reconfigurable THz devices for advanced imaging and adaptive wireless communication. The first approach makes use of electronically tunable varactor diodes. Frequency tunable THz antennas based on this approach have been successfully demonstrated for the first time in G-band, enabling the development of spectroscopic THz detectors and focal-plane imaging arrays. The second approach takes advantages of optical THz spatial modulation based on photo-induced free carriers in semiconductors. Using this approach, high-performance tunable THz modulators/attenuators, reconfigurable masks for THz coded aperture imaging, and photo-induced Fresnel-zone-plate antennas for dynamic THz beam steering and forming have been successfully demonstrated. Our recent study also shows that by employing the so-called mesa array technique, sub-wavelength spatial resolution and higher than 100 dB modulation depth can be achieved, making it possible to develop tunable THz devices (e.g., tunable filters) with performance and versatility far beyond those realized by conventional approaches. On the basis of the above investigation, the prospects of high-speed near-field THz imaging, real-time ultra-sensitive heterodyne imaging and prototype adaptive THz wireless communication links will be discussed.
We report a technique using photo-induced coded-aperture arrays for potential real-time THz imaging at roomtemperature.
The coded apertures (based on Hadamard coding) were implemented using programmable illumination on
semi-insulating Silicon wafer by a commercial digital-light processing (DLP) projector. Initial imaging experiments
were performed in the 500-750 GHz band using a WR-1.5 vector network analyzer (VNA) as the source and receiver.
Over the entire band, each array pixel can be optically turned on and off with an average modulation depth of ~20 dB
and ~35 dB, for ~4 cm2 and ~0.5 cm2 imaging areas respectively. The modulation speed is ~1.3 kHz using the current
DLP system and data acquisition software. Prototype imaging demonstrations have shown that a 256-pixel image can be
obtained in the order of 10 seconds using compressed sensing (CS), and this speed can be improved greatly for potential
real-time or video-rate THz imaging. This photo-induced coded-aperture imaging (PI-CAI) technique has been
successfully applied to characterize THz beams in quasi-optical systems and THz horn antennas.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.