Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.
In this paper, a novel artificial muscle/tendon structure is developed for achieving bio-inspired actuation and
self-sensing. The hybrid structure consists of a dielectric elastomer (DE) material connected with carbon fibers,
which incorporates the built-in sensing and actuation capability of DE and mechanical, electrical interfacing
capability of carbon fibers. DEs are light weight artificial muscles that can generate compliant actuation with
low power consumption. Carbon fibers act as artificial tendon due to their high electro-conductivity and mechanical strength. PDMS material is used to electrically and mechanically connect the carbon fibers with the
DE material. A strip actuator was fabricated to verify the structure design and characterize its actuation and
sensing capabilities. A 3M VHB 4905 tape was used as the DE material. To make compliant electrodes on
the VHB tape, carbon black was sprayed on the surface of VHB tape. To join the carbon fibers to the VHB
tape, PDMS was used as bonding material. Experiments have been conducted to characterize the actuation
and sensing capabilities. The actuation tests have shown that the energy efficiency of artificial muscle can reach
up to 0.7% and the strain can reach up to 1%. The sensing tests have verified that the structure is capable of
self-sensing through the electrical impedance measurement.
Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment
and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive
surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the
present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm
thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging
from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct
transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and
electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE
films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation
through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies
involved in manufacturing of artificial muscles and actuators using smart materials.
Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.