We present a fiber optical shape sensing system that allows to track the shape of a standard telecom fiber with fiber Bragg grating. The shape sensing information is combined with a medical visualization platform to visualize the shape sensing information together with medical images and post-processing results like 3D models, vessel graphs, or segmentation results. The framework has a modular nature to use it for various medical applications like catheter or needle based interventions. The technology has potential in the medical area as it is MR-compatible and can easily be integrated in catheters and needles due to its small size.
A new concept for fiber-optical 3D shape sensing applying femtosecond laser technology for highprecision direct writing of Bragg gratings within the core and the cladding of single core standard telecom fibers is presented. This new technology enables a cost-efficient and real-time 3D shape sensing and navigation of medical catheters or endoscopes only by means of passive optical sensor elements. First prototypes showed the possibility to achieve absolute navigation accuracy of four mm per meter and have successfully been tested in clinical environment.
KEYWORDS: 3D displays, Laparoscopy, Surgery, Visualization, Imaging systems, Mirrors, 3D visualizations, Autostereoscopic displays, 3D image processing, 3D vision
Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.