For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor’s special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras’ acquisition and display.
For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor’s particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.
Readout circuit is designed for a special retina-like CMOS image sensor. To realize the pixels timing drive and readout of the sensor, the Altera's Cyclone II FPGA is used as a control chip. The voltage of the sensor is supported by a voltage chip initialized by SPI with AVR MCU system. The analog image signal outputted by the sensor is converted to digital image data by 12-bits A/D converter ADS807 and the digital data is memorized in the SRAM. Using the Camera-link image grabber, the data stored in SRAM is transformed to image shown on PC. Experimental results show the circuit works well on retina-like CMOS timing drive and image readout and images can be displayed properly on the PC.
The retina-like sensor is a kind of anthropomorphic visual sensor. It plays an important role in both biological and machine vision due to its advantages of high resolution in the fovea, a wide field-of-view, and minimum pixel count. The space-variant property of the sensor makes it difficult to directly measure its modulation transfer function (MTF). The MTF of a retina-like sensor is measured with the bar-target pattern method. According to the pixel arrangement, the sensor is divided into rings and the MTF of each ring is measured using spoke targets with different periods. Comparison between the measured MTF and the theoretical MTF of the sensor showed that they coincide. The differences between them are also analyzed and discussed. The measured MTF helps to analyze the performance of an imaging system containing a retina-like sensor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.