Standard histopathological examination is the gold standard for many disease diagnoses although the technique is limited with no full 3D volume analysis possible. Three dimensional X-ray Phase-Contrast Imaging(PCI) methods have been under constant and fast developments in the recent decades due to their superior performance for imaging low density objects and their ability to provide complementary information compared to attenuation based imaging. Despite the progresses, X-ray Phase Contrast Tomography still encounters remaining challenges to overcome on its way to become a routine non-invasive technique allowing the 3D assessment of tissue architecture in laboratory set-ups. Speckle Based Imaging (SBI) forms a new class of X-ray PCI techniques, sensitive to the first derivative of the phase. The set-up involved and the simplicity of implementation provide many advantages to SBI such as having no field of view and no resolution limitation in addition to have low requirements on the beam coherences. These advantages make SBI a good candidate for the transfer on conventional sources. In this work, we present preliminary results obtained on a conventional μCT and their comparison with data acquired at the European Synchrotron. We used a new phase retrieval algorithm based on optical energy conservation. We applied the method on both phantoms and biological samples in order to evaluate its quantitativeness for a transfer. A comparison to previously available speckle tracking algorithms is also performed. We demonstrate that the combination of the phase retrieval method with a standard μCT can achieve high resolution and high contrast within a few minutes, with a comparable image quality to the results obtained using synchrotron light.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.