Modulation of brain state, e.g., by anesthesia, alters the correlation structure of spontaneous activity, especially in the delta band. This effect has largely been attributed to the ∼1 Hz slow oscillation that is characteristic of anesthesia and nonrapid eye movement (NREM) sleep. However, the effect of the slow oscillation on correlation structures and the spectral content of spontaneous activity across brain states (including NREM) has not been comprehensively examined. Further, discrepancies between activity dynamics observed with hemoglobin versus calcium (GCaMP6) imaging have not been reconciled. Lastly, whether the slow oscillation replaces functional connectivity (FC) patterns typical of the alert state, or superimposes on them, remains unclear. Here, we use wide-field calcium imaging to study spontaneous cortical activity in awake, anesthetized, and naturally sleeping mice. We find modest brain state-dependent changes in infraslow correlations but larger changes in GCaMP6 delta correlations. Principal component analysis of GCaMP6 sleep/anesthesia data in the delta band revealed that the slow oscillation is largely confined to the first three components. Removal of these components revealed a correlation structure strikingly similar to that observed during wake. These results indicate that, during NREM sleep/anesthesia, the slow oscillation superimposes onto a canonical FC architecture.
Conventional two-photon microscopy (TPM) is capable of imaging neural dynamics with subcellular resolution, but it is limited to a field-of-view (FOV) diameter <1 mm. Although there has been recent progress in extending the FOV in TPM, a principled design approach for developing large FOV TPM (LF-TPM) with off-the-shelf components has yet to be established. Therefore, we present a design strategy that depends on analyzing the optical invariant of commercially available objectives, relay lenses, mirror scanners, and emission collection systems in isolation. Components are then selected to maximize the space-bandwidth product of the integrated microscope. In comparison with other LF-TPM systems, our strategy simplifies the sequence of design decisions and is applicable to extending the FOV in any microscope with an optical relay. The microscope we constructed with this design approach can image <1.7-μm lateral and <28-μm axial resolution over a 7-mm diameter FOV, which is a 100-fold increase in FOV compared with conventional TPM. As a demonstration of the potential that LF-TPM has on understanding the microarchitecture of the mouse brain across interhemispheric regions, we performed in vivo imaging of both the cerebral vasculature and microglia cell bodies over the mouse cortex.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.