The next generation of cosmic microwave background (CMB) experiments, such as CMB-S4, will require large arrays of multi-chroic, polarisation-sensitive pixels. Arrays of lumped-element kinetic inductance detectors (LEKIDs) optically coupled through an antenna and transmission line structure are a promising candidate for such experiments. Through initial investigations of small prototype arrays, we have shown this compact device architecture can produce intrinsic quality factors < 10^5, allowing for MUX ratios to exceed 10^3. Moreover, we have demonstrated that additional noise from two-level systems can be reduced to an acceptable level by removing the dielectric from over the capacitive region of the KID, while retaining the microstrip coupling into the inductor. To maximise the efficiency of future focal planes, it is desirable to observe multiple frequencies simultaneously within each pixel. Therefore, we utilise the proven transmission line coupling scheme to introduce band-defining structures to our pixel architecture. Initially targeting the peak of the CMB at 150-GHz, we present a preliminary study of these narrow-band filters in terms of their spectral bandwidth and out of band rejection. By incorporating simple in-line filters we consider the overall impact of adding such structures to our pixel by investigating detector performance in terms of noise and quality factor. Based on these initial results, we present preliminary designs of an optimised mm-wave diplexer that is used to split-up the 150 GHz atmospheric window into multiple sub-bands, before reaching the absorbing length of the LEKID. We present measurements from a set of prototype filter-coupled detectors as the first demonstration towards construction of large-format, multi-chroic, antenna-coupled LEKIDs with the sensitivity required for future CMB experiments.
We present novel optics solutions based on metal mesh flat lenses which can be used to mimic a refracting lens. This approach removes the bulk of the dielectric materials (polyethylene or silicon) required for fast optical refracting systems. Additional attractive property of these lenses is that they filter out unwanted higher frequency radiation, they are easy to anti-reflection coat and they are extremely light. Measurements from 300mm diameter prototypes of both a Fresnel-type graded-index lens and a phase-delay type mesh-lens are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.