Quality Control requires the measurement of all dimensions and specifications for which a supplier is contractually bound to deliver but does not add intrinsic value to the parts that are to be inspected. Therefore, streamlining QC activities provides important savings by reducing overhead costs. QC activities aid in process development, and when combined with Statistical Process Control (SPC) methods, can alert users to trends that would result in products failing specifications before those failures occur. In addition, the ability to collect and analyze a comprehensive data set consisting of the as manufactured, measured values for the parameters of interest can be utilized by system integrators. To serve the needs of the optical manufacturing community and system integrators alike, XONOX has developed an integrated system that allows lens manufacturers and lens consumers to efficiently check all aspects of traditional lens elements. Through the use of innovative job planning and reporting software, devices designed for efficient series inspection, and a process that ensures traceability and consistency, XONOX IQC provides a turn-key solution that meets demanding production, inspection and regulatory requirements.
Both in industrial close-to-production quality control and in laboratory metrology, measuring optical
components and systems with high precision and resolution (typically lambda/100 ptv) is currently achieved by phase-shifting
interferometry devices. The main drawbacks of such devices compared to static fringes systems lie in a higher
cost, and a greater the sensitivity to the environment, both vibration and air turbulence; the latter becomes unacceptable
for large components and large cavity interferometers.
Conversely, static fringes metrology usually lacks precision and resolution. Particularly, the lateral resolution is
an issue, due to the sampling theorem. This paper shows how a linear prediction of a random function (with a Bayesian
approach) makes it possible to tackle a lambda/100 resolution for the estimated wavefront, being the mathematical
expectation of the prediction, i.e. the most probable form with respect to the fringe data. Incidentally, the prediction
increases robustness by detecting and correcting aberrant fringe data with a high reliability.
Furthermore, a Monte-Carlo simulation performed on the whole conditional probability density of the
wavefront, provides a stochastic sub-fringe-spacing interpolation. As a result, confidence intervals for any parameter of
interest (such as ptv, rms, ptv of slopes...) can be estimated over the whole aperture, which is novel worldwide. These
algorithms have also been adapted to wavefront reconstruction from gradient data for Shack-Hartmann and for moiré
devices.
Examples of implementing these algorithms to industrial software will be shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.