Breast ultrasound has been used in the USA primarily as an adjunct breast cancer diagnosis to projection x-ray mammography or DBT. Ultrasound is employed in screening in most of the world and its use for such dense breast is increasing in the USA. In either application, finding corresponding masses in images from both x-ray and ultrasound is time-consuming and prone to correlation errors, leading to delays in cancer diagnosis. Previously, we have shown that, when automated breast ultrasound is performed through a special mammographic paddle in the same or slightly reduced compression as the x-ray exam, such correlation errors were reduced [1-2]. Even for hand-controlled scanning, it should be useful to track the physical position and orientation of the ultrasound transducer in the coordinates of the x-ray to help in reducing both exam time and correlation errors in mass identification. A tracking system for hand scanning through a mesh mammographic paddle is achieved via the coordination of a full-HD camera and a 6-axis sensor, locates the path of the real time ultrasound image plane through the x-ray image or image stack. The tracking system requires minimal setup, with the camera mounted to a fixed location relative to the paddle and the 6-axis sensor attached to the transducer body. The tracking system can achieve an overall frame rate of 5 Hz and mean position error within 6.62mm. In a parallel display, a mass identified in the x-ray image volume will be used to generate trajectories for an ultrasound transducer to reach the same mass. Feasible, improved position tracking should allow creation of spliced 3D volumes and precise, multimodality image fusion.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.