KEYWORDS: Microfluidics, Electrodes, Detection and tracking algorithms, Computer simulations, Very large scale integration, Visualization, Silicon, Sensing systems, Medical research, Inspection
Digital microfluidic systems (DMFS) are poised to provide fully automated, high-throughput, dynamically
reconfigurable sensing devices superior to those available today. Efficient droplet routing algorithms for these systems
have not yet been established, though several solutions have been proposed. Such algorithms are ultimately required to
generate droplet movement schedules and must be robust enough to handle the inevitable increases in problem
complexity that will come as this technology matures. We have proposed a new solution based on a classic VLSI lineprobe
algorithm to meet these demands for the detailed routing of droplets within a multi-stage algorithm. The most
significant addition includes a sub-algorithm that calculates the routing complexity for any DMFS configuration based
on the size, shape, number, type, and distribution of rectilinear obstacles throughout a DMFS biochip surface. By
determining the complexity of the routing of each droplet, routing schedules may be prioritized, minimizing the number
of fluidic and time constraint violations that affect high priority droplet routes. The complexity characterizations
generated by our algorithm may also be used to create consistent, standardized benchmarks for the evaluation of existing
droplet routing solutions. The efficiency of the proposed algorithm has been verified using the simulation presented in
this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.