The Black Hole Explorer (BHEX) is a space very-long-baseline interferometry (VLBI) mission concept that is currently under development. BHEX will study supermassive black holes at unprecedented resolution, isolating the signature of the “photon ring” — light that has orbited the black hole before escaping — to probe physics at the edge of the observable universe. It will also measure black hole spins, study the energy extraction and acceleration mechanisms for black hole jets, and characterize the black hole mass distribution. BHEX achieves high angular resolution by joining with ground-based millimeter-wavelength VLBI arrays, extending the size, and therefore improving the angular resolution of the earthbound telescopes. Here we discuss the science instrument concept for BHEX. The science instrument for BHEX is a dual-band, coherent receiver system for 80-320 GHz, coupled to a 3.5-meter antenna. BHEX receiver front end will observe simultaneously with dual polarizations in two bands, one sampling 80-106 GHz and one sampling 240-320 GHz. An ultra-stable quartz oscillator provides the master frequency reference and ensures coherence for tens of seconds. To achieve the required sensitivity, the front end will instantaneously receive 32 GHz of frequency bandwidth, which will be digitized to 64 Gbits/sec of incompressible raw data. These data will be buffered and transmitted to the ground via laser data link, for correlation with data recorded simultaneously at radio telescopes on the ground. We describe the challenges associated with the instrument concept and the solutions that have been incorporated into the baseline design.
The Black Hole Explorer (BHEX) mission will enable the study of the fine photon ring structure, aiming to reveal the clear universal signatures of multiple photon orbits and true tests of general relativity, while also giving astronomers access to a much greater population of black hole shadows. Spacecraft orbits can sample interferometric Fourier spacings that are inaccessible from the ground, providing unparalleled angular resolution for the most detailed spatial studies of accretion and photon orbits and better time resolution. The BHEX mission concept provides space Very Long Baseline Interferometry (VLBI) at submillimeter wavelengths measurements to study black holes in coordination with the Event Horizon Telescope and other radio telescopes. This report presents the BHEX engineering goals, objectives and TRL analysis for a selection of the BHEX subsystems. This work aims to lay some of the groundwork for a near-term Explorers class mission proposal.
We present the Black Hole Explorer (BHEX), a mission that will produce the sharpest images in the history of astronomy by extending submillimeter Very-Long-Baseline Interferometry (VLBI) to space. BHEX will discover and measure the bright and narrow “photon ring” that is predicted to exist in images of black holes, produced from light that has orbited the black hole before escaping. This discovery will expose universal features of a black hole’s spacetime that are distinct from the complex astrophysics of the emitting plasma, allowing the first direct measurements of a supermassive black hole’s spin. In addition to studying the properties of the nearby supermassive black holes M87∗ and Sgr A∗ , BHEX will measure the properties of dozens of additional supermassive black holes, providing crucial insights into the processes that drive their creation and growth. BHEX will also connect these supermassive black holes to their relativistic jets, elucidating the power source for the brightest and most efficient engines in the universe. BHEX will address fundamental open questions in the physics and astrophysics of black holes that cannot be answered without submillimeter space VLBI. The mission is enabled by recent technological breakthroughs, including the development of ultra-high-speed downlink using laser communications, and it leverages billions of dollars of existing ground infrastructure. We present the motivation for BHEX, its science goals and associated requirements, and the pathway to launch within the next decade.
We present the basic design of a large, light weight, spaceborne antenna for the Black Hole Explorer (BHEX) space Very Long Baseline Interferometry (space-VLBI) mission, achieving high efficiency operation at mm/submm wavelengths. An introductory overview of the mission and its science background are provided. The BHEX mission targets fundamental black hole physics enabled by the detection of the finely structured image feature around black holes known as the photon ring, theoretically expected due to light orbiting the black hole before reaching the observer. Interferometer baselines much longer than an earth diameter are necessary to attain the spatial resolution required to detect the photon ring, leading to a space component. The science goals require high sensitivity observations at mm/sub-mm wavelengths, placing stringent constraints on antenna performance. The design approach described, seeks to balance the antenna aperture, volume and mass constraints of the NASA Explorers mission opportunity profile and the desired high performance. A 3.5 m aperture with a 40 μm surface rms is targeted. Currently, a symmetric, dual reflector, axially displaced ellipse (Gregorian ring focus) optical design and metallized carbon fiber reinforced plastic (CFRP) sandwich construction have been chosen to deliver high efficiency and light weight. Further exploration of design choices and parameter space and reflector shaping studies are in progress.
This paper describes the design and measured performance of the band 2 (L-band, 950 MHz–1760 MHz) cryogenic receiver front-end of the Square Kilometre Array (SKA) radio telescope dish array. The system comprises a wide flare-angle axially corrugated conical horn, a dual linearly polarized orthogonal mode transduce, a noise injection directional coupler, and two amplification stages. Its compact design and cryogenic cooling allow for a very low receiver noise temperature, and it presents another step in the continuous improvement of the noise temperature performance. A Gifford–McMahon cooler physically cools the OMT with its integrated directional coupler to around 70 K, and the first stage low-noise amplifier to about 15 K. A bespoke measurement setup was designed to measure the system’s performance. The measured receiver noise is about 6 K across the frequency band.
The Square Kilometre Array (SKA) Project is a global science and engineering project realizing the next-generation radio telescopes operating in the metre and centimetre wavelengths regions. This paper addresses design concepts of the broadband, exceptionally sensitive receivers and reflector antennas deployed in the SKA1-Mid radio telescope to be located in South Africa. SKA1-Mid (350 MHz – 13.8 GHz with an option for an upper limit of ~24 GHz) will consist of 133 reflector antennas using an unblocked aperture, offset Gregorian configuration with an effective diameter of 15 m. Details on the unblocked aperture Gregorian antennas, low noise front ends and advanced direct digitization receivers, are provided from a system design perspective. The unblocked aperture results in increased aperture efficiency and lower side-lobe levels compared to a traditional on-axis configuration. The low side-lobe level reduces the noise contribution due to ground pick-up but also makes the antenna less susceptible to ground-based RFI sources. The addition of extra shielding on the sub-reflector provides a further reduction of ground pick-up. The optical design of the SKA1-Mid reflector antenna has been tweaked using advanced EM simulation tools in combination with sophisticated models for sky, atmospheric and ground noise contributions. This optimal antenna design in combination with very low noise, partially cryogenic, receivers and wide instantaneous bandwidth provide excellent receiving sensitivity in combination with instrumental flexibility to accommodate a wide range of astronomical observation modes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.