The new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W. M. Keck Observatory has been assembled, tested and shipped to the telescope site, and is currently being installed. The mirror is capable of reflecting the beam to one of six positions around the telescope elevation ring or to retract out of the way to allow the use of Cassegrain instruments. This new functionality is intended to allow rapid instrument changes for transient event observations and improve telescope operations. This paper presents the final as-built design. Additionally, this paper presents detailed information about our alignment approach in the attempt to duplicate the instrument pointing orientation of the existing M3.
On 15 October 2006, a large earthquake damaged both telescopes at W. M. Keck Observatory resulting in weeks of observing downtime. A significant portion of the downtime was attributed to recovery efforts repairing damage to telescope bearing journals, radial pad support structures, and encoder subsystems. To reduce the risk of damage and loss of observing time in future seismic events, we developed a conceptual design for the seismic upgrade of the twin Keck Telescopes. The paper covers the design requirements and constraints for the seismic upgrade, the evaluation method used to check the safety of sensitive components, and the trade-off study used to compare different options and to select the best design. Various design options such as base isolating the structure, strengthening seismic restraints, adding dampers, adding break-away mechanisms, and combinations of these design options are considered in this study. Nonlinear time history analyses are performed to evaluate the performance of the design concepts.
KEYWORDS: Mirrors, Telescopes, Astronomy, Calibration, Sensors, Distortion, Data modeling, Spectroscopy, James Webb Space Telescope, Magnetic resonance imaging
Motivated by the ever increasing pursuit of science with the transient sky (dubbed Time Domain Astronomy or TDA), we are fabricating and will commission a new deployable tertiary mirror for the Keck I telescope (K1DM3) at the W.M. Keck Observatory. This paper presents the detailed design of K1DM3 with emphasis on the opto- mechanics. This project has presented several design challenges. Foremost are the competing requirements to avoid vignetting the light path when retracted against a sufficiently rigid system for high-precision and repeatable pointing. The design utilizes an actuated swing arm to retract the mirror or deploy it into a kinematic coupling. The K1DM3 project has also required the design and development of custom connections to provide power, communications, and compressed air to the system. This NSF-MRI funded project is planned to be commissioned in Spring 2017.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.