In this paper, we present a polymer actuator which is made of dielectrics elastomer. Recently, most polymer actuators utilize expansive force and some layers (>10 layers). They have the disadvantage of pre-strain. As time passes, the performance of the actuator deteriorates. We manufacture polymer actuators with numerous layers (>100 layers) in order to make up the defect in the current. A numerous layer actuator is a structure which can take constant strain without pre-strain operating and a driven method using only contract force. In this paper, its basic concepts are briefly introduced and issues about design and fabrication are discussed. Finally, results of the experiments are given and their effectiveness confirmed
Tactile sensation is one of the most important sensory functions along with the auditory sensation for the visually impaired because it replaces the visual sensation of the persons with sight. In this paper, we present a tactile display device as a dynamic
Braille display that is the unique tool for exchanging information
among them. The proposed tactile cell of the Braille display is based on the dielectric elastomer and it has advantageous features over the existing ones with respect to intrinsic softness, ease of fabrication, cost effectiveness and miniaturization. We introduce
a new idea for actuation and describe the actuating mechanism of the Braille pin in details capable of realizing the enhanced spatial density of the tactile cells. Finally, results of psychophysical experiments are given and its effectiveness is confirmed.
In this paper we present a packaged actuator to be applied for
micro and macro robotic applications. The actuator is based on polymer dielectrics, and intrinsically has musclelike characteristics capable of performing motions such as forward/backward/controllable compliance. The actuator is featured in several aspects such as simplicity and lightness in weight, cost-effectiveness, multiple DOF-actuation, and digital interface. In this paper, its basic concepts are briefly introduced and the issues about design, fabrication and applications are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.