Laser-plasma interactions have many theoretical and technological applications. One is the use of coherently accelerated electrons to provide novel sources of THz radiation. Our research focuses on simulating the cross/self-interactions between two high intensity, ultra-short, counter propagating and detuned laser pulses and an initial neutral target for controlled ionization. Unlike our previous studies of laser-matter interaction over preformed plasma, we explore the injection and collision of laser pulses to induce background plasma driven by the self-guided laser wakefield mechanism, which is then used to perturb the plasma resulting in induced dipole oscillations leading to transverse radiation. Inducing a cylindrical spatial plasma column within the laser beam radius regime provides a stable, spatially localized plasma channel. The emitted radiation from the plasma dipole oscillation (PDO) will not be affected by surrounding plasma absorption, resulting in effective radiation distribution. Results include 3D EM-PIC simulations and a comparison of the self- ionizing plasma against the preformed plasma to assess the efficiency of the mechanisms.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.