Traditional glass-waveguide-based electric-field-assisted ion-exchange model is characterized by the product of voltage
and time which is well known as the voltage model. In the voltage model, the modeling condition is mainly assumed to
be with a constant voltage (or a constant electric field) and temperature is considered to be a constant, diffuse depth is
mainly determined by voltage and time. However, our recent studies and experimental results show that there is a
thermally-induced warming effect in the ion-exchange, which leads to a change of local temperature in the glass
substrate which means the electrical current induced heating effect and the decrease of the local electrical resist with the
increase of the local temperature. In this paper, we analyze the influence of the temperature variation and introduce a
temperature-independent parameter to modify the traditional voltage model and solve the influence of ion-exchanging
temperature variation. Experiment results show that the voltage model with the temperature-independent parameter
modification is more applicable than the traditional one. We obtain a more precise result than traditional model in our
experiment.
Multimode Interference (MMI) based devices are widely used due to excellent performance. Here in this paper, a 1×2
multimode power splitter based on MMI is designed using three-dimensional beam propagation method (3D-BPM), and
then fabricated in glass using the Ag+-Na+ ion-exchange technique. The width of the input and output multimode
waveguides was 50μm and they were tapered to 75μm at the interface to the MMI region. The MMI region was also
quadratically tapered .First, Ag+-Na+ ion exchange was run in nitrate melt at 350°C.Then an electric field was applied at
300°C so that the silver ions continued their migration award. Under the wavelength of 1550nm, the measured results
showed that the propagation loss of multimode straight waveguide can be lower than 0.31dB/cm, and the insertion loss
and uniformity of the splitter were 4.28dB and 0.21dB, respectively. Parameters of the fabrication process and structure
of the device can be optimized to improve the performance of the device.
A detailed theoretical and experimental study of buried ion-exchanged waveguides is reported. The model of the ion
concentration distribution in Ag+-Na+ ion exchanged glass, which is analyzed by numerical calculations, agrees well with
our experiments showing that after the first ion-exchange, a half oval-shaped ion concentration distribution can be
obtained in the substrate; and after the second ion-exchange, the radio-shaped ion concentration distribution presents.
These results may be used to establish the necessary correlation between the ion-exchange process parameters and the
waveguide characteristics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.