Existing community conflict prediction models usually use a single unidirectional LSTM network to process graph and word embeddings simultaneously. However,there is no temporal coherence between graph and word embeddings. And their importance for prediction is different. A community conflict prediction method based on spliced bidirectional LSTM is proposed. Firstly, two bidirectional LSTMs are utilized to process graph and word embeddings respectively to break temporal dependency. Secondly, the hidden states of the two bidirectional LSTMs are weighted. Finally, the weighted hidden states are spliced and fed into subsequent layers of the neural network to predict conflicts. Experimental results show that this method can improve the AUC value to 0.733 on the Reddit dataset, and reduce the number of iterations of training.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.