As the critical dimensions (CDs) of etch profiles continue to decrease, precise control of plasma etch processing becomes increasingly important. Achieving this control requires optimizing etch recipes, which is time consuming and expensive as an extensive amount of experiments must be performed. Here we present a method for the prediction of process windows to achieve target CDs for high aspect ratio trenches using model-based experimental design. A reduced-order model of the physics and chemistry of the etch is used to identify the best experiments to perform to calibrate the model. The model is then used to efficiently explore the process parameter space to identify the largest ranges of process parameters that achieve desired ranges of CDs. The methodology is practically demonstrated on a three-step trench etch through three layers of material consisting of spin-on-glass, spin-on-carbon and silicon. It is found that this physics-model based method requires less than half as many experiments to identify the optimal etch recipe than full-factorial design of experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.