In this paper, two negative-tone chemically amplified resists (CAR) are evaluated. The methodology and results are compared and discussed. The resists include EN-024M from TOK, and NEB 31 from Sumitomo. Both resists show high contrast, good dry etch selectivity, and high environmental stability. EN-024M showed good coating uniformity while NEB31 showed a coating uniformity problem. This was a round “dimple” approximately one centimeter in diameter of different thickness and density at the center of the plate. We addressed the “dimple” coating problem as described in the paper. Optimum PAB and PEB temperatures and nominal to maximum doses for isolated features were determined by running a matrix of PAB and PEB temperatures along with a dose series. We evaluated the process and compared the lithographic performance in terms of dose sensitivity, dose and bake latitude, resolution, resist profile, OPC (Optical Proximity Correction) pattern fidelity, CD uniformity, environmental stability, Line Edge Roughness (LER) and etching bias and resistance.
Improvements in the final uniformity of masks can be shrouded by error contributions from many sources. The final Global CD Uniformity (GCDU) of a mask is degraded by individual contributions of the writing tool, the Post Applied Bake (PAB), the Post Exposure Bake (PEB), the Develop sequence and the Etch step. Final global uniformity will improve by isolating and minimizing the variability of the PEB and Develop. We achieved this de-coupling of the PEB and Develop process from the whole process stream by using “dark loss” which is the loss of unexposed resist during the develop process. We confirmed a correspondence between Angstroms of dark loss and nanometer sized deviations in the chrome CD. A plate with a distinctive dark loss pattern was related to a nearly identical pattern in the chrome CD. This pattern was verified to have originated during the PEB process and displayed a [Δ(Final CD)/Δ(Dark Loss)] ratio of 6 for TOK REAP200 resist. Previous papers have reported a sensitive linkage between Angstroms of dark loss and nanometers in the final uniformity of the written plate. These initial studies reported using this method to improve the PAB of resists for greater uniformity of sensitivity and contrast. Similarly, this paper demonstrates an outstanding optimization of PEB and Develop processes.
In this paper, a process established with a positive-tone chemically amplified resist (CAR) from TOK REAP200 and Fujifilm Arch FEP171 and 50kV MEBES system is discussed. This TOK resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. In the mask industries, the most popular positive tone CAR is FEP171, which is a high activation energy type CAR. REAP (Raster E-beam Advanced Process) 200 is low activation energy type and new acetal protecting polymer. In this study, we compared to these different type resists in terms of contrast, PAB and PEB latitude, resist profile, footing, T-topping, PED stability, LER, Global CDU (Critical Dimension Uniformity) and resolution. The REAP200 Resist obtained 75nm isolated lines and spaces, 90nm dense patterns with vertical profile, and a good stability of delay time.
A chemically amplified resist (CAR) process has been recognized as an approach to meet the demanding critical dimension (CD) specifications of 100nm node technology and beyond. Recently, significant effort has been devoted to optimizing CAR materials, which offer the characteristics required for next generation photomask fabrication. In this paper, a process established with a positive-tone CAR from TOK and 50kV MEBES eXara system is discussed. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. The coating process is conducted in an environment with amine concentration less than 2 ppb. A nitrogen environment is provided during plate transfer steps. Resolution using a 60nm writing grid is 90nm line and space patterns. CD linearity is maintained down to 240nm for isolated lines or spaces by applying embedded proximity effect correction (emPEC). Optimizations of post-apply bake (PAB) and post-expose bake (PEB) time, temperature, and uniformity are completed to improve adhesion, coating uniformity, and resolution. A puddle develop process is optimized to improve line edge roughness, edge slope, and resolution. Dry etch process is optimized on a TetraT system to transfer the resist image into the chrome layer with minimum etch bias.
As integrated circuits require smaller lines to provide the memory and processing capability for tomorrow's marketplace, the photomask industry is adopting higher contrast resists to improve photomask lithography. Photomask yield for several high-contrast resist recipes may be improved by coating masks at the mask shop. When coating at a mask shop, an effective method is available that uses coat/bake cluster tools to ensure blanks are clean prior to coating. Many high-contrast resists are available, and some are more susceptible to time-dependent performance factors than conventional resists. One of these factors is the time between coating and writing. Although future methods may reduce the impact of this factor, one current trend is to reduce this time by coating plates at the mask shop just prior to writing. Establishing an effective process to clean blanks prior to coating is necessary for product quality control and is a new task that is critical for maskmakers who previously purchased mask plates but have decided to begin coating them within their facility. This paper provides a strategy and method to be used within coat/bake cluster tools to remove particle contamination from mask blanks. The process uses excimer-UV ionizing radiation and ozone to remove organic contaminants, and then uses a wet process combined with megasonic agitation, surfactant, and spin forces. Megasonic agitation with surfactant lifts up particles, while the convective outflow of water enhances centripetal shear without accumulating harmful charge.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.