Deep learning has proven to be an efficient and robust method for many computational imaging systems. The advantages of machine learning, as a rule, are that it is fast—at least in its supervised form after training is complete—and seems exceedingly effective in capturing regularizing priors. Here, we focus the discussion on non-invasive three-dimensional (3D) object reconstruction. One then faces the additional dilemma of choosing the appropriate model of light-matter interaction inside the specimen, i.e. the forward operator. We describe the three stages of approximation that are applicable: weak scattering with weak diffraction (also known as the Radon transform), weak scattering with strong diffraction, and strong scattering. We then overview machine learning approaches for the various models, and glance at the consequences of oversimplifying the forward operator choice.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.