Coupled plasmonic systems are of great interest and have many applications such as information processing and sensing. By choosing proper geometric configurations of coupled plasmonic systems, one can obtain various optical properties. However, some interesting and important effects could not be described by earlier methods. We develop an improved method for coupled plasmonic nanoparticle systems that maps geometric configurations to optical properties more accurately. With the improved method, we realize a low-loss cavity of metallic nanoparticles through a proper geometric configuration, and we find a limit to the loss in the metallic nano-cavity. We also use this method to realize an exceptional point and exceptional nexus in a hybrid plasmonic system. Finally, we predict asymmetric coupling, which leads to chirality and directional energy transfer.
In experiments, we demonstrated that luminescence quantum yield of single gold nanorods illuminated by continuous wave laser at wavelength of 532 nm depends on the excitation polarization, while that excited by 633 nm laser does not. The electrons in sp-band dominates the luminescence process when the 633 nm laser is applied, resulting in a constant quantum yield under different excitation polarizations. When the 532 nm laser is applied, both the electrons in d-band (interband transition) and sp-band (surface plasmon) involve in the luminescence process. The variation of quantum yield by the 532 nm laser is resulted from different efficiency of d-band interband transition and sp-band plasmon conversion into luminescence. Furthermore, we found that plasmon modes coupling effect can modulate strongly the plasmon emission efficiency by comparing the luminescence of two sets of the nanorods with different size. And smaller size GNRs often results in higher quantum yield of interband transition. These findings make a step to understand the luminescence process of plasmonic nanostructures and point out a rule to control it through plasmon mode coupling effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.