There is growing demand for biodegradable polymer fibres in tissue engineering and nerve regeneration. We demonstrate a scalable and inexpensive fabrication technique to produce polycaproactone (PCL) fibres using fibredrawing technique. Here we report on the first successful drawing of hollow-core and solid-core PCL fibres of different cross sections. The demonstrated capacity to tailor the surface morphology of PCL fibres, together with their biodegradability and tissue compatibility, makes them a unique material base for tissue engineering and nerve regeneration applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.