The Faint Intergalactic Medium Redshifted Emission Balloon (FIREBall-2) is a UV multi-object spectrograph designed to detect emission from the circumgalactic and circumquasar medium at low redshifts (0.3 < z < 1.0). The FIREBall-2 spectrograph uses a suborbital balloon vehicle to access a stratospheric transmission window centered around 205 nm and is fed by a 1-m primary parabolic mirror and a 2-mirror field corrector that allows an ≈11’ x 35’ field of view. The slit-mask spectrograph can access dozens of galaxy targets per field, with each target spectrum read out on a UV electron-multiplying CCD detector. Following a flight in 2018, several refurbishments and modifications were made to the instrument and telescope to prepare for additional flight opportunities. Here we present an overview of upgrades and improvements made since the previous flight and discuss the 2023 field campaign, which culminated in a flight from Fort Sumner, New Mexico in September, 2023.
We present the integration of a new calibration system into the Faint Intergalactic-medium Redshifted Emission Balloon-2 (FIREBall-2), which added in-flight calibration capability for the recent September 2023 flight. This system is composed of a calibration source box containing zinc and deuterium lamp sources, focusing optics, electronics, sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through non-sequential modeling for the near-UV (191 to 221 nm) for spectrograph slit mask position calibration, electron multiplying charged-coupled device (EMCCD) gain amplification verification, and wavelength calibration. Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements. FIREBall-2 flew in 2023, but did not collect calibration data due to early termination of the flight.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.