We have demonstrated an improvement of light extraction from GaN based flip-chip LEDs by patterning encapsulant. Two dimensional (2D) micron-scale patterns of encapsulant were realized by using imprint technique of thermosetting polymer. This approach has several advantages such as technical simplification, low cost and freedom of
material choice. In this work, we fabricated 2D micron-scale patterns with the triangular or sinusoidal profiles on the polymer encapsulated GaN-based flip-chip LEDs. The enhancement factors of light extraction of GaN LEDs with the patterned encapsulant comparing to the flat encapsulated LEDs are about 32% and 47% corresponding to the triangular and sinusoidal profiles, respectively. To evaluate the concept of a diffraction grating in enhancement of light extraction,
we performed a simulation of diffraction based on simplified one-dimensional (1D) rigorous coupled wave analysis (RCWA). The calculation reveals that the grating of sinusoidal profile has greater transmittance than that of triangular profile which is in the same trend with the experimental results. These results provide a guideline for improvement of the LED light extraction.
Photonic modes in 1-D and 2-D silicon-on-insulator photonic
crystal waveguides periodic or containing line-defects, are fully
explored by means of angle- and polarization-resolved
micro-reflectance measurements. Both quasi-guided and truly guided
photonic modes are probed with a frequency-wave vector range that
is greatly expanded under attenuated total reflectance
configuration. It is shown that the presence of a supercell
repetition in the direction perpendicular to a line defect leads
to the simultaneous excitation of defect and bulk modes folded in
a reduced Brillouin zone. Consequently, the group-velocity
dispersion of the defect modes corresponding to different
polarizations of light can be fully determined. We show also that
the measured dispersion is in good agreement with full 3D
calculations based on expansion in the waveguide modes.
We developed a UV assisted soft nanoimprint lithography (UV-SNIL) that can be applied for the reproduction of nanometer features over large areas. Based on a simple argument deduced from the Navier-Stokes equation, we suggest several solutions to enhance the imprinting process ability. One of the solutions is to use tri-layer soft stamps, which consists of a rigid carrier, a low Young's module buffer and a top layer supporting nanostructure patterns to be replicated. Typically, the buffer and the top layer are made of polydimethylsiloxane (PDMS) of 5 mm thickness and polymethylmetacrylate (PMMA) of 10-50 μm thickness respectively. Patterning of the stamp top layer can be done in three different ways, i.e., spin coating, nano-compression and direct writing, all resulting in 100 nm features over a large wafer area. Another solution is to use a bilayer resist system for which imprinting is performed on the top layer while the final pattern is obtained by transferring the top layer image into the bottom layer by reactive ion etching. Comparing to other imprint techniques, UV-SNIL works at room temperature and low pressure, which is applicable for a wafer-scale replication at high throughput. For the research purpose, we also demonstrate nanostructure fabrication by lift-off techniques.
Proceedings Volume Editor (1)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.