The push to improve data capacity in wireless networks has led to an increase in carrier frequency in the terahertz band. This has enabled the use of direct beams transmission due to the shorter wavelength. One method of further densification of transmitted communication channels is through the use of vortex Bessel beams, which allow for signal combination in a single channel. In addition, these beams offer improved beam stability through their unique features of non-diffraction and self-healing, which is particularly important in wireless transmission where atmospheric turbulence is a factor. Vortex Bessel beams are characterized by a topological charge, l, which cannot be determined from their intensity profile alone. Therefore, spatial filtering is necessary at the receiver stage to identify the desired mode carried by a distorted or combined beam. A diffractive optical element with a specially designed complex transmission can serve as a filter matched to the desired mode. This study presents the experimental results of Bessel mode identification using beams formed by binary spiral binary phase axicons that transform the Gaussian mode of high-power terahertz radiation from the Novosibirsk Free Electron Laser. The specified mode is passed through a filter (similar spiral binary axicon with |l| = 1, 2, 3, or 4, and a lens) and then detected by a pyroelectric camera in the lens focal plane. A positive response, indicated by a narrow peak, confirms the compatibility of the specified and filtering modes. Experiments were conducted on single-mode and combined beams (l = -1 and -2), and mode identification was also demonstrated for beams passed through an inhomogeneous medium.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.