ShapeAXI represents a cutting-edge framework for shape analysis that leverages a multi-view approach, capturing 3D objects from diverse viewpoints and subsequently analyzing them via 2D Convolutional Neural Networks (CNNs). We implement an automatic N-fold cross-validation process and aggregate the results across all folds. This ensures insightful explainability heat-maps for each class across every shape, enhancing interpretability and contributing to a more nuanced understanding of the underlying phenomena. We demonstrate the versatility of ShapeAXI through two targeted classification experiments. The first experiment categorizes condyles into healthy and degenerative states. The second, more intricate experiment, engages with shapes extracted from CBCT scans of cleft patients, efficiently classifying them into four severity classes. This innovative application not only aligns with existing medical research but also opens new avenues for specialized cleft patient analysis, holding considerable promise for both scientific exploration and clinical practice. The rich insights derived from ShapeAXI’s explainability images reinforce existing knowledge and provide a platform for fresh discovery in the fields of condyle assessment and cleft patient severity classification. As a versatile and interpretative tool, ShapeAXI sets a new benchmark in 3D object interpretation and classification, and its groundbreaking approach hopes to make significant contributions to research and practical applications across various domains. ShapeAXI is available in our GitHub repository https://github.com/DCBIA-OrthoLab/ShapeAXI.
In this paper we propose feature selection and machine learning approaches to identify a combination of features for risk prediction of Temporomandibular Joint (TMJ) disease progression. In a sample of 32 TMJ osteoarthritis and 38 controls, feature selection of 5 clinical comorbidities, 43 quantitative imaging, 28 biological features and was performed using Maximum Relevance Minimum Redundancy, Chi-Square and Least Absolute Shrinkage and Selection Operator (LASSO) and Recursive Feature Elimination. We compared the performance of learning using concave and convex kernels (LUCCK), Support Vector Machine (SVM) and Random Forest (RF) approaches to predict disease cure/improvement or persistence/worsening. We show that the SVM model using LASSO achieves area under the curve (AUC), sensitivity and precision of 0.92±0.08, 0.85±0.19 and 0.76 ±0.18, respectively. Baseline levels of headaches, lower back pain, restless sleep, muscle soreness, articular fossa bone surface/bone volume and trabecular separation, condylar High Gray Level Run Emphasis and Short Run High Gray Level Emphasis, saliva levels of 6Ckine, Osteoprotegerin (OPG) and Angiogenin, and serum levels of 6ckine and Brain Derived Neurotrophic Factor (BDNF) were the most frequently occurring features to predict more severe TMJ osteoarthritis prognosis.
In this paper, we present FlyBy CNN, a novel deep learning based approach for 3D shape segmentation. FlyBy-CNN consists of sampling the surface of the 3D object from different view points and extracting surface featuressuch as the normal vectors. The generated 2D images are then analyzed via 2D convolutional neural networkssuch as RUNETs. We test our framework in a dental application for segmentation of intra-oral surfaces. TheRUNET is trained for the segmentation task using image pairs of surface features and image labels as groundtruth. The resulting labels from each segmented image are put back into the surface thanks to our samplingapproach that generates 1-1 correspondence of image pixels and triangles in the surface model. The segmentationtask achieved an accuracy of 0.9
KEYWORDS: Data storage, 3D modeling, 3D image processing, Shape analysis, Machine learning, Image processing, Distributed computing, Data processing, Data modeling, Data analysis
The Data Storage for Computation and Integration (DSCI) proposes management innovations for web-based secure data storage, algorithms deployment, and task execution. Its architecture allows uploading, browsing, sharing, and task execution in remote computing grids. Here, we demonstrate the DSCI implementation and the deployment of Image processing tools (TMJSeg), machine learning algorithms (MandSeg, DentalModelSeg), and advanced statistical packages (Multivariate Functional Shape Data Analysis, MFSDA), with data transfer and task execution handled by the clusterpost plug-in. Due to its comprehensive web-based design, local software installation is no longer required. The DSCI aims to enable and maintain distributed computing and collaboration environment across multi-site clinical centers for the data processing of multisource features such as clinical, biological markers, volumetric images, and 3D surface models.
KEYWORDS: Shape analysis, Databases, Data storage, Visualization, Data modeling, Data centers, Statistical analysis, Dentistry, 3D image processing, Data analysis
This study presents a web-system repository: Data Storage for Computation and Integration (DSCI) for Osteoarthritis of the temporomandibular joint (TMJ OA). This environment aims to maintain and allow contributions to the database from multi-clinical centers and compute novel statistics for disease classification. For this purpose, imaging datasets stored in the DSCI consisted of three-dimensional (3D) surface meshes of condyles from CBCT, clinical markers and biological markers in healthy and TMJ OA subjects. A clusterpost package was included in the web platform to be able to execute the jobs in remote computing grids. The DSCI application allowed runs of statistical packages, such as the Multivariate Functional Shape Data Analysis to compute global correlations between covariates and the morphological variability, as well as local p-values in the 3D condylar morphology. In conclusion, the DSCI allows interactive advanced statistical tools for non-statistical experts.
Temporomandibular Joint (TMJ) Osteoarthritis (OA) is associated with significant pain and disability. It is really hard to diagnose TMJ OA during early stages of the disease. Subchondral bone texture has been observed to change in the TMJ early during TMJ OA progression. We believe that raw probability-distribution matrices describing image texture encode important information that might aid diagnosing TMJ OA. In this paper we present novel statistical methods for High Dimensionality Low Sample Size Data (HDLSSD) to test the discriminatory power of probability-distribution matrices in computed from TMJ OA medical scans. Our results, and comparison with previous results obtained from the summary features obtained from them indicate that probability-distribution matrices are an important piece of information provided by texture analysis methods and should not be down sampled for analysis.
We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, to describe every shape. The results were compared to nine different supervised machine learning algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. In conclusion, SVA is a 3D Slicer extension that classifies pathology of the temporomandibular joint osteoarthritis cases based on 3D morphology.
To date, there is no single sign, symptom, or test that can clearly diagnose early stages of Temporomandibular Joint Osteoarthritis (TMJ OA). However, it has been observed that changes in the bone occur in early stages of this disease, involving structural changes both in the texture and morphometry of the bone marrow and the subchondral cortical plate. In this paper we present a tool to detect and highlight subtle variations in subchondral bone structure obtained from high resolution Cone Beam Computed Tomography (hr-CBCT) in order to help with detecting early TMJ OA. The proposed tool was developed in ITK and 3DSlicer and it has been disseminated as open-source software tools. We have validated both our texture analysis and morphometry analysis biomarkers for detection of TMJ OA comparing hr-CBCT to μCT. Our initial statistical results using the multidimensional features computed with our tool indicate that it is possible to classify areas of demonstrated loss of trabecular bone in both μCT and hr-CBCT. This paper describes the first steps to alleviate the current inability of radiological changes to diagnose TMJ OA before morphological changes are too advanced by quantifying subchondral bone biomarkers. This paper indicates that texture based and morphometry based biomarkers have the potential to identify OA patients at risk for further bone destruction.
Temporo-mandibular osteo arthritis (TMJ OA) is characterized by progressive cartilage degradation and subchondral bone remodeling. The causes of this pathology remain unclear. Current research efforts are concentrated in finding new biomarkers that will help us understand disease progression and ultimately improve the treatment of the disease. In this work, we present Shape Variation Analyzer (SVA), the goal is to develop a noninvasive technique to provide information about shape changes in TMJ OA. SVA uses neural networks to classify morphological variations of 3D models of the mandibular condyle. The shape features used for training include normal vectors, curvature and distances to average models of the condyles. The selected features are purely geometric and are shown to favor the classification task into 6 groups generated by consensus between two clinician experts. With this new approach, we were able to accurately classify 3D models of condyles. In this paper, we present the methods used and the results obtained with this new tool.
Recent studies have demonstrated the difficulties to replicate scientific findings and/or experiments published in past.1 The effects seen in the replicated experiments were smaller than previously reported. Some of the explanations for these findings include the complexity of the experimental design and the pressure on researches to report positive findings. The International Committee of Medical Journal Editors (ICMJE) suggests that every study considered for publication must submit a plan to share the de-identified patient data no later than 6 months after publication. There is a growing demand to enhance the management of clinical data, facilitate data sharing across institutions and also to keep track of the data from previous experiments. The ultimate goal is to assure the reproducibility of experiments in the future. This paper describes Shiny-tooth, a web based application created to improve clinical data acquisition during the clinical trial; data federation of such data as well as morphological data derived from medical images; Currently, this application is being used to store clinical data from an osteoarthritis (OA) study. This work is submitted to the SPIE Biomedical Applications in Molecular, Structural, and Functional Imaging conference.
Osteoarthritis (OA) of temporomandibular joints (TMJ) occurs in about 40% of the patients who present TMJ disorders. Despite its prevalence, OA diagnosis and treatment remain controversial since there are no clear symptoms of the disease, especially in early stages. Quantitative tools based on 3D imaging of the TMJ condyle have the potential to help characterize TMJ OA changes. The goals of the tools proposed in this study are to ultimately develop robust imaging markers for diagnosis and assessment of treatment efficacy. This work proposes to identify differences among asymptomatic controls and different clinical phenotypes of TMJ OA by means of Statistical Shape Modeling (SSM), obtained via clinical expert consensus. From three different grouping schemes (with 3, 5 and 7 groups), our best results reveal that that the majority (74.5%) of the classifications occur in agreement with the groups assigned by consensus between our clinical experts. Our findings suggest the existence of different disease-based phenotypic morphologies in TMJ OA. Our preliminary findings with statistical shape modeling based biomarkers may provide a quantitative staging of the disease. The methodology used in this study is included in an open source image analysis toolbox, to ensure reproducibility and appropriate distribution and dissemination of the solution proposed.
KEYWORDS: Bone, Diagnostics, 3D modeling, Control systems, 3D image processing, 3D acquisition, Visualization, Computed tomography, Dentistry, Statistical modeling
This study aimed to investigate imaging statistical approaches for classifying three-dimensional (3-D) osteoarthritic morphological variations among 169 temporomandibular joint (TMJ) condyles. Cone-beam computed tomography scans were acquired from 69 subjects with long-term TMJ osteoarthritis (OA), 15 subjects at initial diagnosis of OA, and 7 healthy controls. Three-dimensional surface models of the condyles were constructed and SPHARM-PDM established correspondent points on each model. Multivariate analysis of covariance and direction-projection-permutation (DiProPerm) were used for testing statistical significance of the differences between the groups determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering was then conducted. Compared with healthy controls, OA average condyle was significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis. We observed areas of 3.88-mm bone resorption at the superior surface and 3.10-mm bone apposition at the anterior aspect of the long-term OA average model. DiProPerm supported a significant difference between the healthy control and OA group (p-value=0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3-D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.
KEYWORDS: Control systems, Bone, 3D modeling, Diagnostics, Statistical modeling, 3D acquisition, Visualization, 3D image processing, Statistical analysis, Tissues
The aim of this study was to investigate imaging statistical approaches for classifying 3D osteoarthritic morphological variations among 169 Temporomandibular Joint (TMJ) condyles. Cone beam Computed Tomography (CBCT) scans were acquired from 69 patients with long-term TMJ Osteoarthritis (OA) (39.1 ± 15.7 years), 15 patients at initial diagnosis of OA (44.9 ± 14.8 years) and 7 healthy controls (43 ± 12.4 years). 3D surface models of the condyles were constructed and Shape Correspondence was used to establish correspondent points on each model. The statistical framework included a multivariate analysis of covariance (MANCOVA) and Direction-Projection- Permutation (DiProPerm) for testing statistical significance of the differences between healthy control and the OA group determined by clinical and radiographic diagnoses. Unsupervised classification using hierarchical agglomerative clustering (HAC) was then conducted. Condylar morphology in OA and healthy subjects varied widely. Compared with healthy controls, OA average condyle was statistically significantly smaller in all dimensions except its anterior surface. Significant flattening of the lateral pole was noticed at initial diagnosis (p < 0.05). It was observed areas of 3.88 mm bone resorption at the superior surface and 3.10 mm bone apposition at the anterior aspect of the long-term OA average model. 1000 permutation statistics of DiProPerm supported a significant difference between the healthy control group and OA group (t = 6.7, empirical p-value = 0.001). Clinically meaningful unsupervised classification of TMJ condylar morphology determined a preliminary diagnostic index of 3D osteoarthritic changes, which may be the first step towards a more targeted diagnosis of this condition.
Temporomandibular joint (TMJ) disorders are a group of conditions that cause pain and dysfunction in the jaw joint and the muscles controlling jaw movement. However, diagnosis and treatment of these conditions remain controversial. To date, there is no single sign, symptom, or test that can clearly diagnose early stages of osteoarthritis (OA). Instead, the diagnosis is based on a consideration of several factors, including radiological evaluation. The current radiological diagnosis scores of TMJ pathology are subject to misdiagnosis. We believe these scores are limited by the acquisition procedures, such as oblique cuts of the CT and head positioning errors, and can lead to incorrect diagnoses of flattening of the head of the condyle, formation of osteophytes, or condylar pitting. This study consists of creating and validating a methodological framework to simulate defects in CBCT scans of known location and size, in order to create synthetic TMJ OA database. User-generated defects were created using a non-rigid deformation protocol in CBCT. All segmentation evaluation, surface distances and linear distances from the user-generated to the simulated defects showed our methodological framework to be very precise and within a voxel (0.5 mm) of magnitude. A TMJ OA synthetic database will be created next, and evaluated by expert radiologists, and this will serve to evaluate how sensitive the current radiological diagnosis tools are.
Osteoarthritis (OA) is associated with significant pain and 42.6% of patients with TMJ disorders present with evidence of TMJ OA. However, OA diagnosis and treatment remain controversial, since there are no clear symptoms of the disease. The subchondral bone in the TMJ is believed to play a major role in the progression of OA. We hypothesize that the textural imaging biomarkers computed in high resolution Conebeam CT (hr- CBCT) and μCT scans are comparable. The purpose of this study is to test the feasibility of computing textural imaging biomarkers in-vivo using hr-CBCT, compared to those computed in μCT scans as our Gold Standard. Specimens of condylar bones obtained from condylectomies were scanned using μCT and hr- CBCT. Nine different textural imaging biomarkers (four co-occurrence features and five run-length features) from each pair of μCT and hr-CBCT were computed and compared. Pearson correlation coefficients were computed to compare textural biomarkers values of μCT and hr-CBCT. Four of the nine computed textural biomarkers showed a strong positive correlation between biomarkers computed in μCT and hr-CBCT. Higher correlations in Energy and Contrast, and in GLN (grey-level non-uniformity) and RLN (run length non-uniformity) indicate quantitative texture features can be computed reliably in hr-CBCT, when compared with μCT. The textural imaging biomarkers computed in-vivo hr-CBCT have captured the structure, patterns, contrast between neighboring regions and uniformity of healthy and/or pathologic subchondral bone. The ability to quantify bone texture non-invasively now makes it possible to evaluate the progression of subchondral bone alterations, in TMJ OA.
Aim: The use of conventional mirror images does not adequately guide surgeons on the correction
of facial asymmetries. The purpose of this study was to evaluate the utility of an individualized atlas
as a template for corrective surgeries for patients suffering from mandibular asymmetry. The patientspecific
atlas is calculated from both the original asymmetric mandible and the mirror of the same
mandible registered on the cranial base. Material and Method: Three patients with history of
favorable clinical outcome of the correction of their mandibular asymmetry were chosen for this
pilot study. CBCT were taken before and 6 weeks after corrective surgery using NewTom 3G. Each
volume was mirrored and rigidly registered on the cranial base. Surface models for both the
mandible and its registered mirror were used to compute an atlas using deformable fluid registration.
Corrective surgery was simulated based of the resulting atlas. Differences between the virtual
simulated outcome and the actual surgical outcome were computed using UNC SPHARM-PDM
toolbox. Results: The detected differences between the virtual simulated outcome and the actual
surgical outcome, as characterized in 6 degrees of freedom, were smaller than 2 mm of translation
and 5 degrees of rotation. This indicates that the location of the synthesized template is similar to the
desired clinical outcome. Conclusions: The construction of patient-specific atlases using non-rigid
registration has the potential to optimize and increase the predictability of the outcome of
craniofacial corrective surgeries for asymmetric patients.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.