Defects in master and replica waveguide gratings can cause image quality issues on AR displays. Characterizing these gratings is difficult due to their small features, which can be smaller than the wavelength of visible light. Microscopy is unsuitable for production testing as it lacks resolution and can be destructive. The authors propose an optical metrology setup using Littrow configuration to accurately measure diffraction grating pitch and orientation at a picometer and arcsecond scale to identify defects. The authors will also demonstrate the impact of grating analysis on the image quality of diffractive waveguides.
Amidst the mixed news surrounding the feasibility of Augmented Reality (AR) smart glasses, the demand for commercially viable mass production of industry-standard optical waveguide combiners remains unwavering. Over the past two years, our consortium of companies has proposed a cost-effective and scalable manufacturing process for Surface Relief Grating (SRG) based waveguides, offering a comprehensive path from concept to fabrication through large-area nanoimprinting. This approach has garnered significant interest from both customers and partners associated with the participating companies. Our aim is to push beyond the established limits of large-area nanoimprinting. In this work we address the obstacles and latest advancements in maintaining imprint quality, fidelity and uniformity during large-area nanoimprinting. We demonstrate various building blocks that are crucial to manufacture high quality and cost-effective AR waveguides, such as the replication of slanted gratings and the possibility of low residual layer thickness using large-area nanoimprint lithography. We employ high refractive index materials, such as resin and glass (1.8, 1.9 and 2.0), and also explore a lighter and flatter version of the RealView 1.9 glass. Our primary objective is to demonstrate that large-area nanoimprinting not only presents itself as a novel method for high-volume manufacturing of SRG waveguides but also enables the production of challenging optics for AR smart glasses.
Nanoimprinting of surface-relief grating-based waveguides has the potential to produce one of the industry-leading augmented reality (AR) smart glasses, but there are still many challenges in the design, scaling, and reproducibility of these imprinted waveguides. A promising path toward mass manufacturing of optical waveguide combiners is via large-area nanoimprinting. Here, we present the complete value chain with partners involved throughout the process: from design, mastering, and materials to imprinting and metrology, to prove that this method improves not only the manufacturing throughput but also the waveguide quality. We demonstrate that the replication and image quality are true to the intended design using large area, high refractive index (n = 1.9), square (300 mm × 300 mm) glass substrates with high-refractive index resins (n = 1.9). This is shown to be valid for over 100 replications and for large area nanoimprinting (Gen5, 1100 mm × 1300 mm). Our goal is to demonstrate a viable path toward high-volume and low-cost manufacturing of AR waveguides based on surface relief gratings.
Nanoimprinting of surface-relief grating-based waveguides has the potential to result in the best performing Augmented Reality (AR) smart glasses, but there are still many challenges in the design, scaling, and reproducibility of these imprinted waveguides. We presented a promising path toward mass manufacturing of optical waveguide combiners via large-area nanoimprinting at SPIE AR/VR/MR 2022. This alternative route for manufacturing surface-relief gratings on a larger area generated much interest. This follow-up paper presents a further optimized design based on the lessons learned from the previous paper, with a particular focus on quality. The complete value chain with partners is involved throughout the process of this iterative update: from design, mastering, and materials to imprinting and metrology, to prove that this method improves not only the manufacturing throughput but also the waveguide quality. We demonstrate that both the replication and image quality is true to the intended design using large area, high refractive index (1.9 RI), square (300 x 300mm) glass substrates with high refractive index resins (1.9 RI). Our objective is to further establish this new approach towards high-volume and low-cost manufacturing of waveguides based on surface relief gratings as a viable path forward for enabling the Metaverse.
An immersive augmented reality experience requires adapting the display/optical engine to the human visual system, which introduces many measurement and testing challenges. Near-eye displays often use waveguide combiners to produce superior image quality, thereby placing special demands on the metrology needs. Hence, this challenging application requires robust and state-of-the-art mechanics, and optical setup. In this study, an optical metrology system that can perform various image quality analyses on diced (eyepieces) and undiced (wafer level) waveguides is described. Our novel optical metrology system consists of a human-eye mimicking optical setup, and a multi-axis highly accurate robotics.
A promising path towards consumer electronics-ready manufacturing of optical waveguide combiners is via large-area nanoimprinted surface relief gratings on high index glass substrates. Presently, this is realized through equipment and substrates based on wafer format (up to 12-inch). In this work, we present a way to produce waveguides with surface relief gratings utilizing the entire value chain from design to mastering to replication on panel-level nanoimprint equipment using rectangular high refractive index glass substrates and high refractive index resins. This is demonstrated on a greater than Gen 3 panel size (550 mm x 650 mm). The fabricated waveguides are optically tested to validate the design and the value chain. We demonstrate that the quality of the large area imprints is similar to present wafer-level imprints. Thus, we introduce a new approach towards high volume and low-cost manufacturing of waveguides based on surface relief gratings.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.