Two-point microrheology measurement from widely separated colloids can reveal the bulk rheological property of a fluid. We develop such a technique which measures the effective viscosity using two trapped particles in a dual trap optical tweezers by exploiting the motional resonance excited in the probe particle when the control particle is driven externally. We carry out the measurement both from the amplitude and the phase response of the resonance and show that the zero-crossing of the phase with respect to the drive signal at the resonance frequency gives more accurate results when the particles are separated widely. Later on, we compare our measured viscosity values with that measured using a commercial rheometer and obtain an agreement within ∼1 %. In future, this method can be extended to a linear viscoelastic fluid enabling high accuracy measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.