KEYWORDS: Atmospheric plasma, Plasma, Diffractive optical elements, High power lasers, Polishing, Chemical analysis, Chemical reactions, Surface finishing, Chemical elements
Continuous phase plate (CPP) is an important diffractive optical element, which is widely used in high power laser devices. The continuous phase plate with a small aperture period of 4 mm is processed by the atmospheric pressure plasma polishing (APPP). Through the study of the reaction mechanism, it is found that the removal volume has a non-linear relationship with the dwell time, which will lead to machining errors. Based on this, a dwell time compensation method is proposed, and the machining program is generated according to this relationship. A 70mm × 70mm × 20mm continuous phase plate was fabricated by using the processing program generated by this method. The processing time was 4.5h, and the surface residual converged to 57.188nm RMS. The experimental results show that the method can effectively calculate the removal function under different dwell time, and significantly improve the machining accuracy.
Reaction-sintered silicon carbide (RS-SiC) has been widely applied in space telescope mirrors, reflector, microelectronic mechanical systems due to its excellent properties. These applications require high surface accuracy and quality, but traditional mechanical contact polishing methods are hard to process this material due to the hardness and poor machinability. In this paper, atmospheric pressure plasma processing (APPP) which is a non-contact optical manufacturing technique with highly efficient and subsurface damage-free has been proposed to process this material, and optimal process parameter mainly about influence on removal function for machining processing RS-SiC have been found. The sample was observed and analyzed by scanning white-light interferometer (SWLI), which showed the calculated Peak- Maximum removal rate (MRR) and Volume-MRR were 12.526μm/min and 0.1298mm3 /min. Meanwhile, the surface chemical composition of RS-SiC was also investigated by XPS to reveal the plasma etching processes. The results illustrated that small number of radicals CxFy were introduced onto the RS-SiC surface during the plasma process which could be generated during the process of the reaction gas CF4 being excited. The process parameters and analysis of surface chemical composition in this paper will guide the further processing of RS-SiC.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.