Wound healing assessment is usually performed visually by a trained physician. This type of evaluation is very subjective and returns limited information about the wound progression. In contrast, optical imaging techniques are non-invasive ways to quantitatively measure biological parameters. Spatial frequency domain imaging (SFDI) is an optical technique that exploits sinusoidal patterns of light with multiple spatial frequencies to measure the tissue frequency-specific response, from which the absorption and scattering coefficient of the material can be derived. While SFDI is based on models of light transport that assume the tissue is homogeneous, skin is composed by several layer with very different optical properties. An underutilized property of SFDI, however, is that the spatial frequency of the patterns determines the penetration depth of photons in the tissue. By using multiple ranges of spatial frequencies, we are developing a means to obtain morphological data from different volumes of tissue. This data is used to reconstruct the optical properties in depth, allowing us to differentiate between different thin layers of tissue. In this study we have developed a 2-layer optical phantom model with realistic optical properties and dimensions, that mimics the physiology of wound healing. We have used this physical model to validate the accuracy of this approach in obtaining layer specific optical properties.
Autologous keratinocytes or stem cell based therapies are modern approaches for the treatment of skin loss in burn victims and chronic wound patients. The aim of this study is to identify depth-resolved structural changes in treated burn wounds using Spatial Frequency Domain Imaging (SFDI). When altering the investigated depth into tissue via the spatial frequency used in our calculations, we found changes in the scattering parameters for the treated samples. These scattering changes are correlated with histology, indicating a potential means to monitor re-epithelization and collagen formation during the treatment process across the entire wound area.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.