For many years, photobiomodulation in cancer patients has been used empirically, based on the positive clinical experience. When using PBM for the prevention and treatment of early radiation toxicity, exposure can occur directly in the area of the tumor site. For that reason, the data is need about a potential influence of low-intensity red light as on the normal as well on the tumor cells exposed to ionizing radiation. The aim of the work was to study the effects of photobiomodulation (PBM) in the red spectrum (640 nm) with fluences from 3 mJ/cm2 to 2 J/cm2 in combination with ionizing radiation at doses of 2–6 Gy against human BJ-5ta-hTERT cells – postnatal fibroblasts. The cells were exposed to low-intensity red light before or after their exposure to IR, the viability of the cells was determined by MTT-test 24 hours after the last exposure. The effects of PBM depend on the fluence of PBM, the dose of IR and the sequence of the actions of these physical factors on cells. The adaptive effect of PBM was observed only for high fluences – 1 and 2 J/cm2 when exposed to PBM and subsequent irradiation of IR. At the same time, the stimulating effect of PBM was observed only for low fluences from 3 to 300 mJ/cm2 under IR irradiation and subsequent (after 1 hour) exposure to PBM. These data should be taken into account when using PBM for the correction of adverse events of radiation therapy in a clinic.
The aim of the work was studying the effects of photobiomodulation in doses of less than 1 J/cm2 in combination with gamma-irradiation to Hela Kyoto cells. Tumor cells were irradiated with 640 nm LED at different energy densities before and after to gamma-irradiation. Cells viability was determined 24 h after exposure for each gamma-irradiation dose and PBM mode. There was a statistically significant decrease in a number of viable tumor cells for samples that were exposed to PBM prior to gamma-irradiation and a statistically significant increase in a number of viable tumor cells for samples that were exposed to PBM after gamma-irradiation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.