X-ray phase-contrast tomography (XPCT) offers a highly sensitive 3D imaging approach to investigate different disease-relevant networks from the single cell to the whole organ. We present here a concomitant study of the evolution of tissue damage and inflammation in potential target organs of the disease in the murine model of multiple sclerosis. XPCT identifies and monitors structural and cellular alterations throughout the central nervous system, but also in the gut and eye, of mice induced to develop multiple sclerosis-like disease and sacrificed at pre-symptomatic and symptomatic time points. This approach rests on a multiscale analysis to detect early appearance of imaging indicators potentially acting as biomarkers predictive of the disease. The longitudinal data permit an original evaluation of the sequential evolution of multi-organ damage in the mouse model, shedding light on the role of the gut-brain axis in the disease initiation and progression, of relevance for the human case.
Tissue engineering (TE) holds promise for generating lab-grown patient specific organs which can provide: (1) effective treatment for conditions that require volumetric tissue transplantation and (2) new platforms for drug testing. Even though volumetric structural information is essential for confirming successful organ maturation, TE protocol designs are currently informed through destructive and 2D construct assessment tools (e.g. histology). X-ray phase-contrast computed-tomography (PC-CT) can generate non-destructive, high resolution, 3D density maps of organ architecture. In this work, PC-CT is used as new imaging tool for guiding two TE protocols currently at the in-vitro testing stage. The first (1) involves cell-repopulation of an oesophageal scaffold, with the aim of using the regenerated construct for treating long-gap oesophageal atresia, whilst for the second (2) a lung-derived scaffold is populated with islets for regenerating a pancreas, with the “repurposed” lung offering a platform for diabetes drug testing. By combing 3D images and quantitative information, we were able to perform comprehensive construct evaluation. Specifically, we assessed volumetrically: (1) the cell-distribution within the regenerated oesophagi and (2) islet integration with the vascular tree of the lung-derived scaffold. This new information was proven to be essential for establishing corresponding TE protocols and enabled their progression to more advanced scale-up models. We are confident that PC-CT will provide the novel insights necessary to further progress TE protocols, with the next step being in-vivo testing. Crucially, the non-destructive nature of PC-CT will allow in-vivo assessments of TE constructs following their implantation into animal hosts, to investigate their successful integration.
X-ray dark-field imaging is used to visualize the ultra-small angle x-ray scattering signal that originates from sub-resolution density fluctuations within the sample microstructure. Dark-field tomography using the edge-illumination x-ray imaging system is presented as a tool for measuring this scattering signal in a sample in three dimensions. Its applicability to different fields is shown through example images of a multi-material phantom, a tissue-engineered esophagus, a pouch cell battery and a short-fiber reinforced composite material. The multichannel contrast available in edge-illumination helps with material identification, with high contrast at boundaries enhancing dark-field reconstructions.
X-ray Phase-Contrast Computed Tomography (PC-CT) increases contrast in weakly attenuating samples, such as soft tissues. In Edge-Illumination (EI) PC-CT, phase effects are accessed from amplitude modulation of the x-ray beam using alternating transmitting and attenuating masks placed prior to the sample and detector. A large field of view PC-CT scanner using this technique was applied to two areas of cancer assessment, namely excised breast and esophageal tissue. For the breast tissue, Wide Local Excisions (WLEs) were studied intra-operatively using PC-CT for the evaluation of tumor removal in breast conservation surgery. Images were acquired in 10 minutes without compromising on image quality, showing this can be used in a clinical setting. Longer, higher resolution PC-CT images were also taken, with analysis showing previously undetected thinning of tumor strands. This would allow a second use of the system for “virtual histopathology”, outside of surgery. For the esophagus samples, tissues were taken from esophagectomy surgery, where the lower part of the esophagus is removed, and the stomach relocated. For the assessment of ongoing therapy, accurate staging of tumors in the removed esophagus is essential, with the current gold standard provided by histopathology. PCCT images were acquired on several samples and compare well with histopathology, with both modalities showing similar features. Examples are shown where staging of tumor penetration is possible with PC-CT images alone, which is hoped will be an important step in performing the imaging and staging intra-operatively.
Tissue imaging is a pivotal component of both biomedical research and clinical practice. In order to identify tissue structures down to the cellular level, it requires the capability to image mm-size unstained tissue specimens with micron to sub-micron resolution. Tissue imaging is normally performed either using x-rays or visible light. While the latter is limited by light scattering in relatively thick tissues, the former often suffers from poor contrast in absorption-based systems. Phase-contrast x-ray microscopes exist but they often lack the required quantitativeness, entail acquisition times of the order of tens of hours for 3-D imaging and are limited to narrow fields of view. We propose a novel multi-modal phase-based x-ray microscope capable of imaging mm-thick tissue samples on a mm-size field of view using intensity-modulation masks. They act as optical elements allowing the quantitative retrieval of tissue properties such as transmission, refraction and scattering. Additionally, given that the system’s spatial resolution depends only on the mask aperture size, a multi-resolution approach is possible by selecting masks with aperture size matching the resolution requirements (micron and sub-micron) of specific samples. The design and optimization of the x-ray microscope is presented in this paper together with exemplar images of a thin foam sample resulting from the retrieval of the three contrast channels. The final paper will include details of the system parameter optimization (e.g., propagation distance, mask aperture and period), their effect on the retrieval algorithm and imaging performance as well as the first images of biological samples.
A preliminary investigation into the use of cycloidal computed tomography for intraoperative specimen imaging is presented. Intraoperative imaging is applied in time-sensitive clinical settings, where obtaining a high-resolution, highquality image within minutes is paramount in evaluating the success of operations and/or the need for additional surgery. As a flexible imaging method that is compatible with x-ray phase contrast imaging, cycloidal computed tomography can provide both high spatial resolution and high image contrast, whilst keeping scan times short thanks to an effective under-sampling approach. To gather early evidence, the method was tested on resected breast and oesophageal tissue. The results, although preliminary, indicate that cycloidal imaging may indeed be beneficial for intraoperative specimen imaging, although further studies are required to confirm this potential.
Owing to their combination of low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Porosity introduced by the manufacturing process can compromise structural performance and integrity, with a maximum porosity content of 2% considered acceptable for many aerospace applications. The main nondestructive evaluation (NDE) techniques used in industry are ultrasonic imaging and X-ray computed tomography, however both techniques have limitations. Edge Illumination X-ray Phase Contrast Imaging (EI XPCi) is a novel technique that exploits the phase effects induced by damage and porosity on the X-ray beam to create improved contrast. EI XPCi is a differential (i.e., sensitive to the first derivative of the phase), multi-modal phase method that uses a set of coded aperture masks to acquire and retrieve the absorption, refraction, and ultra-small-angle scattering signals, the latter arising from sub-pixel sample features. For carbon fiber-reinforced woven composite specimens with varying levels of porosity, porosity quantification obtained through various signals produced by EI XPCi was compared to ultrasonic immersion absorption C-scans and matrix digestion. The standard deviation of the differential phase is introduced as a novel signal for the quantification of porosity in composite plates, with good correlation to ultrasonic attenuation.
Combining low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Barely visible impact damage can compromise the structural integrity and potentially lead to failures. Edge Illumination (EI) X-ray Phase Contrast imaging (XPCi) is a novel X-ray imaging technique that uses the phase effects induced by damage to create improved contrast. For a small cross-ply composite specimen with impact damage, damage detection was compared to ultrasonic immersion C-scans. Different defect types could be located and identified, verified from the conventional ultrasonic NDE measurement.
The design of an X-ray phase contrast tomography system for intra-operative specimen imaging based on edge illumination is presented. The use of edge illumination makes possible working with large focus, polychromatic X-ray sources reducing acquisition times of tomography scans down to values compatible with clinical use, while maintaining phase sensitivity in a compact device. The results collected so far show that application of this technology to breast conservation surgery has great potential to reduce re-operations, thus saving additional costs for healthcare services and stress for patients.
Theranostics is an innovative research field that aims to develop high target specificity cancer treatments by administering small metal-based nanoparticles (NPs). This new generation of compounds exhibits diagnostic and therapeutic properties due to the high atomic number of their metal component. In the framework of a combined research program on low dose X-ray imaging and theranostic NPs, X-ray Phase Contrast Tomography (XPCT) was performed at ESRF using a 3 μm pixel optical system on two samples: a mouse brain bearing melanoma metastases injected with gadolinium NPs and, a mouse liver injected with gold NPs. XPCT is a non-destructive technique suitable to achieve the 3D reconstruction of a specimen and, widely used at micro-scale to detect abnormalities of the vessels, which are associated to the tumor growth or to the development of neurodegenerative diseases. Moreover, XPCT represents a promising and complementary tool to study the biodistribution of theranostic NPs in biological materials, thanks to the strong contrast with respect to soft tissues that metal-based NPs provide in radiological images. This work is relied on an original imaging approach based on the evaluation of the contrast differences between the images acquired below and above K-edge energies, as a proof of the certain localization of NPs. We will present different methods aiming to enhance the localization of NPs and a 3D map of their distribution in large volume of tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.